服务热线: 0769-85309665
五星体育频道直播在线观看

您现在的位置:首页 > 新闻中心 > 行业新闻

定容冷冻“冻”住最新鲜

来源:上海五星体育频道手机在线直播观看    发布时间:2024-07-28 12:48:13

  冷冻,是我们最熟知的食品保存技术,也是我们每天都在使用的方法。但冷冻的问题也不少,例如冷冻之后食品口感下降、质构破坏和某些营养成分丢失等。那么,有没有一种技术,既能让食品长期保存,又能极大程度地保持口感和营养呢?有的,那就是定容冷冻。这是一种原本用于生物和医药制品保存的新方法,但人们发现,在食品保存方面,它也大有可为。

  低温能降低生物体内生化反应速率,延长生物活性时间,是我们保存包括食物和生物材料的最主要方法。传统的低温冷冻保存过程是在定压(常压,1个大气压)条件下进行的,食品细胞不可避免地会遭受冷冻损伤,影响冷冻后的品质。

  而生物材料大部分成分是水,同时水在常压下会在0℃及以下温度发生冻结。地球上的绝大部分生物生活在1个大气压下,因此在常压下生物材料会在0℃及以下发生冻结,这是常规定压冷冻方法的基本原理。

  然而常规冷冻方法通常会导致生物体发生一系列不可逆转的变化,以此来降低生物体活性。传统冷冻方法带来的效果与冷冻速率紧密关联——虽然目前已经发现可行的方法(如慢速冷冻、快速冷冻、玻璃化等)对细胞进行低温保存,但是对于宏观的组织和器官而言,由于生物体内部热阻的存在使得传热速率较慢,没办法实现玻璃化,导致组织遭受不可逆转的冰晶损伤和浓度损伤,这是目前生物冷冻技术的最大瓶颈。

  为了降低冷冻过程的细胞损伤,科学家们提出添加冷冻保护剂(如甘油、DMSO等)来进行冷冻保存,然而冷冻保护剂存在三个显著问题:一是冷冻保护剂具有毒性;二是解冻过程中冰晶反玻璃化会带来冷冻损伤;三是目前冷冻保护剂大多应用于于细胞的冷冻过程,很难适用于组织器官的保存。因此有必要开发新的冷冻方法来对组织器官进行保存,同时避免冷冻保护剂毒性和冷冻损伤。

  为了解决这一个问题,近年来科学家们相继发展出了超高压冷冻保存、过冷保存和定容冷冻等低温保存技术。下面,我们简单地介绍一下这几种冷冻方法。

  超高压冷冻保存。1968年,科学家Moor首次提出了这个概念,后来日本京都大学教授林力丸等人于1990年将其应用到食品保存领域。超高压冷冻首先要在常温下对液体施加高压,然后对其降温到0℃以下(此时水仍以液体形式存在),最后瞬间释放压力,使得液体水快速结晶,形成排列规则、体积小的胞内冰,减少冰晶对组织的破坏。

  超高压冷冻可以对不同的生物进行保存。近年来学者利用超高压冷冻技术对三文鱼、猪肝和黑鲈鱼等进行了冷冻保存的研究,根据结果得出超高压冷冻能显著减小冷冻损伤。

  然而在实际生物冷冻应用中,超高压冷冻技术也有一定的问题——食品冻结后内部细小冰晶不稳定会导致冷冻损伤,同时超高压冷冻设备的加工成本高、操作流程也比较复杂。

  过冷保存。过冷是指将生物材料的温度降低至其凝固点以下而不形成冰晶(过冷态),因此不存在冰晶损伤,能轻松实现高品质保存。但该方法最严重的问题是过冷液体并不稳定,从而限制了该方法的实际应用。

  定容冷冻保存。为了尽最大可能避免冷冻损伤,使样品以稳定的过冷态保存,美国加州大学伯克利分校的Rubinsky教授于2005年提出了定容冷冻(或称“等容冷冻”)的热力学概念。该技术一开始主要是针对医学上器官和生物体的保存,后来逐渐发展应用到了食品低温保存领域。

  在定容冷冻过程中,系统体积从始至终保持恒定。随着等容腔体内水成核结冰,系统内的压力逐渐升高,以此来降低了被保存的生物样品及其周边液体的凝固点温度。由于系统内生物样品及其周边液体始终处于过冷液态,不存在冰晶损伤,因此能实现高品质低温保存。

  通过上面的描述能够准确的看出,与常压冷冻、超高压冷冻和过冷保存等方法相比,定容冷冻直接以稳定的低温过冷态保存生物材料,具有没有冰晶损伤和浓度损伤的优点,可以完好保存细胞和组织。

  我们知道,在不同条件下,纯水的结冰温度并不总是0℃。比如,压力的升高会导致水溶液凝固点的降低。当压力升高至210MPa时,纯水可以在-22℃以上温度保持液态。定容冷冻是利用了这一特性,其操作流程为:

  首先,在等容冷冻的腔体内装满液体,然后将被保存的生物样品浸泡在腔体内的液体中;然后,对冷冻腔体进行降温,当温度降到0℃以下时,液体会在特定位置(通常远离细胞或器官)逐渐结冰;随着温度的降低,腔体内液冰层逐渐增多;最终,腔体内液体和固体状态达到共存平衡状态,生物样品以低温过冷态长期保存。

  这样的方法,有助于解决常压冷冻带来的问题——冰晶损伤和细胞内外浓度损伤。相关理论研究根据结果得出,与常压系统相比,定容系统的固液相变界面更为稳定,能减小与树枝状晶体形成有关的别的机械损伤,因此定容系统可应用到生物冷冻保存过程中。

  如前所述,定容冷冻原本是为了医学上保存器官和生物体而开发出来。因此,它在组织器官和生物体的保存实验中,显示出了极大的优势。

  例如,科学家们用定容冷冻方法来保存大鼠心脏,根据结果得出,与采用常规0℃冰块中低温保存的心脏相比,在-4℃定容系统中冷冻的大鼠心脏组织的组织损伤较小,间质水肿更小;同时定容冷冻可以有效的预防心脏保存后血管通透性增加,其生理性能会较好。在胰岛细胞的保存实验中,科学家发现,胰岛细胞可以在-3℃定容条件下冷冻保存数天,所保存的胰岛没再次出现细胞簇的解离,形态完整性也保持良好。在线虫的保存实验中,科学家也发现,采用-5℃条件下的定容冷冻方法保存后的线虫依然能够存活。

  这些研究都突显了定容冷冻在临床医学应用上突出的潜在价值。但大家没想到的是,在随后的研究中,定容冷冻在食品保存中也显示出极大的潜力。

  就我们的日常生活而言,冷链对于食品保鲜至关重要,冷冻则是食品冷链中的一个关键环节。

  当温度降低时,食品中的生理化学变化和微生物的繁殖能够获得有效抑制,从而减缓食品的生命活动和腐坏速度,以维持食品品质,延长新鲜食品的保存期。

  冰箱等应用传统冷冻方法的设备的发明,极大地延长了食品的保存期,极大地提升了人类的生活品质。但令人头疼的是,传统冷冻方法在延长食品保质期的同时,也带来了其他问题。

  比如,冷冻后的食物口感不好。大家可能都会遇到这一种的问题:当用冰箱冷冻保存葡萄时,会严重破坏葡萄的细胞组织,解冻后葡萄出现褐变、变软,同时腐败速度加剧。保存草莓也会遇到这一种的问题,解冻后的草莓变软、出水严重,同时腐败加剧,货架期变短。

  这是因为传统的食品冷冻是在“定压”(常压)条件下进行的,食品一般在冰箱或者速冻机内完成冻结。但我们都知道,放入冰箱中的食物并不会马上就被冻住,需要一定的时间。这是因为食品中热阻的存在,使得对食品降温的速率较慢,没办法实现玻璃化——这是一种介于液态与固态之间的状态,在这个形态下,细胞结构不会受到破坏。

  无法实现玻璃化的结果就导致冷冻生成的冰晶对食品的组织造成一定损伤,从而破坏食品结构,使口感大打折扣。虽然食品速冻技术从某一些程度上能减小这种冷冻损伤,但其品质降低的问题仍然严重。

  解冻后食品好不好吃,这可是判断一种冷冻方法是不是好的重要的条件。我们采用三种食材进行了对比。

  首先进行的测试是马铃薯。薯条是深受众多购买的人喜爱的食品,马铃薯是制作薯条的原料,但是加工或者切块切条后的马铃薯很容易变质。中科院理化所和美国加州大学的科研人员发现,采用定容冷冻保存切块后的马铃薯,可以较大程度保证马铃薯不变色,并维持高硬度,其品质显著优于传统液氮速冻方法。

  第二项测试则是樱桃。美国农业部的研究人员利用定容冷冻方法对新鲜樱桃进行了保存,他们发现,与定压冷冻相比,定容冷冻减少了樱桃失水率,并更好地保留了冷冻樱桃的颜色、质地、质构和抗氧化剂含量。

  最后进行的测试是番茄。美国农业部的科学家分别运用定容冷冻、10℃冷藏、快速冷冻和定压冷冻对番茄进行冷冻,保存4周后解冻发现,定容冷冻可保持新鲜番茄的质量、体积、颜色、营养成分(抗坏血酸、番茄红素和酚类)和抗氧化活性,质构破坏最小,品质最高。

  这是因为定容冷冻保存是利用定容腔体内冰膨胀所产生的压力,来降低食品的凝固点温度。因此,在定容过程中,食品始终以过冷态保存,不存在冰晶损伤,来保证了食品品质。

  可能大多数人不太清楚,冷链运作成本高昂,是碳排放的“大户”。根据估计,仅食品冷藏产业所消耗的电量就占全球年用电量的4%,相当于排放6.54×108吨的二氧化碳,带来直接经济成本约1200亿美元。

  中国科学院理化技术研究所和美国加州大学的科研人员研究发现,由于在定容冷冻保存过程中,食品本身不存在相变,因此能大大降低设备正常运行能耗,减少碳排放。经过测算,若在全世界内采用定容冷冻保存食品,每年能够大大减少多达65亿千瓦时的能源消耗,同时减少与发电相关的碳排放46亿公斤,这相当于马路上减少约100万辆汽车的排放量。在碳中和的路上,食品定容冷冻能够说是充分的发挥了先锋模范作用了。这样看来,使用定容冷冻保存食品,不但可以避免冰晶对食品带来的损伤,来提升食品品质,还能够大大减少冷链在运行过程中的能量消耗,节能减排。

  定容冷冻通过过冷态保存,可克服传统常压冷冻过程带来的机械损伤和溶液损伤,也成为低温领域研究的焦点领域。目前定容条件下的低温保存还存在一些未知领域,比如,当生物或生物处于0℃以下定容过冷态时的细胞活性、生化反应、生命活动和保存时间情况如何?针对宏观生物或生物材料,能不能深入研究不同浓度保护液和冷冻温度的耦合关系,从而彻底消除定容冷冻带来的压力和渗透压影响?

  然而定容冷冻也不是完美的,任旧存在一些问题,例如冷冻本身产生的高压对被保存的物料有一定负面作用,操作流程较复杂等。希望随着科学技术的发展,这些缺陷都能够进一步被克服。

  科学谜题仍在,但定容冷冻技术已逐步走出实验室、走向市场——一些食品企业和生物公司已开始尝试将该技术应用到食品、药品和器官等生物材料的保存。随技术的进步,相信定容冷冻必会进一步造福人类。